xxxxxxxxxx
# Basic syntax:
your_dataframe.columns
# Note, if you want the column names as a list, just do:
list(your_dataframe.columns)
xxxxxxxxxx
In [4]: import pandas as pd
In [5]: df = pd.DataFrame(columns=['A','B','C','D','E','F','G'])
In [6]: df
Out[6]:
Empty DataFrame
Columns: [A, B, C, D, E, F, G]
Index: []
xxxxxxxxxx
import pandas as pd
# Assuming the DataFrame is stored in the 'df' variable
column_names = df.columns.tolist()
print(column_names)
xxxxxxxxxx
# Import pandas package
import pandas as pd
# making data frame
data = pd.read_csv("nba.csv")
# iterating the columns
for col in data.columns:
print(col)
xxxxxxxxxx
>gapminder.columns = ['country','year','population',
'continent','life_exp','gdp_per_cap']