xxxxxxxxxx
import pandas as pd
inFile = "Table.xlsx" # Excel name file
inSheetName = "Sheet1" # Excel name sheet
rows2skip = 1
pd.read_excel(inFile, sheet_name = inSheetName, skiprows = 1)
xxxxxxxxxx
# Assuming data types for `a` and `b` columns to be altered
pd.read_excel('file_name.xlsx', dtype={'a': np.float64, 'b': np.int32})
xxxxxxxxxx
df = pd.read_excel('reading_excel_file.xlsx',
sheet_name='Purchase Orders 1',
skiprows=2)
xxxxxxxxxx
df = pd.read_excel("sales_excel.xlsx",
sheet_name='Sheet1',
header=5)
xxxxxxxxxx
import pandas as pd
data = pd.read_excel (r'C:\Users\Ron\Desktop\Product List.xlsx')
df = pd.DataFrame(data, columns= ['Product'])
print (df)
xxxxxxxxxx
df = pd.read_excel('reading_excel_file.xlsx', sheet_name='Purchase Orders 1')
xxxxxxxxxx
df = pd.read_excel('reading_excel_file.xlsx',
sheet_name='Purchase Orders 1',
usecols='A:B, H:I')
xxxxxxxxxx
df = pd.read_excel('reading_excel_file.xlsx',
sheet_name='Purchase Orders 1',
skipfooter=3)
xxxxxxxxxx
import pandas as pd
df = pd.read_excel('Book1.xlsx',sheetname='Sheet1',header=0,converters={'names':str,'ages':str})
>>> df
names ages
0 bob 05
1 tom 4
2 suzy 3