xxxxxxxxxx
# Think of the lambda function as defining a REALLY small function without
# a name.
# EXAMPLE #
lis = [2, 4, 6, 8]
output = lambda [parameter] : return True if [parameter] in lis else return False
print(output[4])
xxxxxxxxxx
f = lambda parameter : exp1 if cond else exp2
# example
f = lambda x: "even" if x%2==0 else "odd"
xxxxxxxxxx
lambda <arguments> : <Return Value if condition is True> if <condition> else <Return Value if condition is False>
lambda x : True if (x > 10 and x < 20) else False
xxxxxxxxxx
df['new column name'] = df['column name'].apply(lambda x: 'value if condition is met' if x condition else 'value if condition is not met')
xxxxxxxxxx
# Lambda function with if-else
square = lambda x : x*x if(x > 0) else None
print(square(4))
xxxxxxxxxx
# Lambda function with if-else
square = lambda x : x*x if(x > 0) else None
print(square(4))
xxxxxxxxxx
func = lambda element: (expression and DoSomething) or DoSomethingIfExpressionIsFalse