xxxxxxxxxx
num = input()
xzoj = 0
zoj = 0
fard = 0
xfard = 0
for i in range(len(num)):
if int(num[i]) % 2 ==0:
xzoj +=1
zoj += int(num[i])
else :
xfard +=1
fard +=int(num[i])
print(zoj / xzoj)
print(fard / xfard)
xxxxxxxxxx
from __future__ import division
import os
import sys
import glob
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
%matplotlib inline
%precision 4
plt.style.use('ggplot')
xxxxxxxxxx
a=[]
def knapsack(pro,wt,c,n,ans):
global a
if n==0 or c==0:
a+=ans,
elif wt[n-1]>c:
knapsack(pro,wt,c,n-1,ans)
else:
knapsack(pro,wt,c-wt[n-1],n-1,ans+pro[n-1])
knapsack(pro,wt,c,n-1,ans)
n=int(input())
profit=list(map(int,input().split()))
weights=list(map(int,input().split()))
capacity=int(input())
knapsack(profit,weights,capacity,n,0)
a.sort(reverse=True)
print(a[1 if a[0]<=10 and a[0]%3 else 0])
xxxxxxxxxx
n=int(input())
for i in range (n):
a,b,k=(map(int,input().split()))
if a>=b:
print(k//b)
else:
print(k//a)
xxxxxxxxxx
import random
from collections import defaultdict
def main_roll():
dice_amount = int(input("Enter the number of dice: ")) # Total Number of Dice Being Rolled
sides_of_dice = int(input("Enter the number of sides: ")) # Total Number of Sides per Die
rolls_of_dice = int(input("Enter the number of rolls to simulate: ")) # Total Number of Times Each Die Rolled
result = roll(dice_amount, sides_of_dice, rolls_of_dice) # This stores the results
maxH = 0 # Used for formulating
for i in range(dice_amount, dice_amount * sides_of_dice + 1):
if result[i] / rolls_of_dice > maxH: maxH = result[i] / rolls_of_dice
for i in range(dice_amount, dice_amount * sides_of_dice + 1):
print('{:2d}{:10d}{:8.2%} {}'.format(i, result[i], result[i] / rolls_of_dice, '#' * int(result[i] / rolls_of_dice / maxH * 40)))
def roll(dice_amount, sides_of_dice, rolls):
d = defaultdict(int)
for _ in range(rolls):
d[sum(random.randint(1, sides_of_dice) for _ in range(dice_amount))] += 1
return d
main_roll()
xxxxxxxxxx
def djikstra(graph, initial):
visited_weight_map = {initial: 0}
nodes = set(graph.nodes)
# Haven't visited every node
while nodes:
next_node = min(
node for node in nodes if node in visited
)
if next_node is None:
# If we've gone through them all
break
nodes.remove(next_node)
current_weight = visited_weight_map[next_node]
for edge in graph.edges[next_node]:
# Go over every edge connected to the node
weight = current_weight + graph.distances[(next_node, edge)]
if edge not in visited_weight_map or weight < visited_weight_map[edge]:
visited_weight_map[edge] = weight
return visited
xxxxxxxxxx
if number == 2 : prime_con = True
if number>2 and number%2==0 : prime_con = False
stopper = math.floor(math.sqrt(number))
for j in range(3,100,2):
if number%j==0:
prime_con = False
break
xxxxxxxxxx
# A brute force approach based
# implementation to find if a number
# can be written as sum of two squares.
# function to check if there exist two
# numbers sum of whose squares is n.
def sumSquare( n) :
i = 1
while i * i <= n :
j = 1
while(j * j <= n) :
if (i * i + j * j == n) :
print(i, "^2 + ", j , "^2" )
return True
j = j + 1
i = i + 1
return False
# driver Program
n = 25
if (sumSquare(n)) :
print("Yes")
else :
print( "No")