xxxxxxxxxx
df.sort_values(by='col1', ascending=False, na_position='first')
col1 col2 col3 col4
3 NaN 8 4 D
4 D 7 2 e
5 C 4 3 F
2 B 9 9 c
0 A 2 0 a
1 A 1 1 B
xxxxxxxxxx
# Python, Pandas
# Sorting dataframe df on the values of a column col1
# Return sorted array without modifying the original one
df.sort_values(by=["col1"])
# Sort the original array permanently
df.sort_values(by=["col1"], inplace = True)
xxxxxxxxxx
// Single sort
>>> df.sort_values(by=['col1'],ascending=False)
// ascending => [False(reverse order) & True(default)]
// Multiple Sort
>>> df.sort_values(by=['col1','col2'],ascending=[True,False])
// with apply()
>>> df[['col1','col2']].apply(sorted,axis=1)
// axis = [1 & 0], 1 = 'columns', 0 = 'index'
xxxxxxxxxx
DataFrame.sort_values(self, by, axis=0, ascending=True,
inplace=False, kind='quicksort',
na_position='last',
ignore_index=False)
# Example
df.sort_values(by=['ColToSortBy'])
xxxxxxxxxx
df.sort_values(by='col1', ascending=False)
col1 col2 col3 col4
4 D 7 2 e
5 C 4 3 F
2 B 9 9 c
0 A 2 0 a
1 A 1 1 B
3 NaN 8 4 D
xxxxxxxxxx
s.sort_values(ascending=True)
1 1.0
2 3.0
4 5.0
3 10.0
0 NaN
dtype: float64
xxxxxxxxxx
# Basic syntax:
import pandas as pd
df.sort_values(by=['col1'])
# Note, this does not sort in place unless you add inplace=True
# Note, add ascending=False if you want to sort in decreasing order
# Note, to sort by more than one column, add other column names to the
# list like by=['col1', 'col2']
xxxxxxxxxx
sort_na_first = gapminder.sort_values('lifeExp',na_position='first')