xxxxxxxxxx
d.loc[d["conditionDisplayName"] == "Brand New", "conditionDisplayName"] = 6
d.loc[d["conditionDisplayName"] != "Brand New", "conditionDisplayName"] = 4
xxxxxxxxxx
In [41]:
df.loc[df['First Season'] > 1990, 'First Season'] = 1
df
Out[41]:
Team First Season Total Games
0 Dallas Cowboys 1960 894
1 Chicago Bears 1920 1357
2 Green Bay Packers 1921 1339
3 Miami Dolphins 1966 792
4 Baltimore Ravens 1 326
5 San Franciso 49ers 1950 1003
xxxxxxxxxx
import pandas as pd
# Creating a sample dataframe
data = {'Name': ['John', 'Emma', 'Mike', 'Sophia'],
'Age': [25, 30, 35, 40],
'Salary': [50000, 60000, 45000, 70000]}
df = pd.DataFrame(data)
# Condition: Changing Salary to 55000 where Age is greater than 30
df.loc[df['Age'] > 30, 'Salary'] = 55000
# Print the updated DataFrame
print(df)
xxxxxxxxxx
# np.where function works as follows:
import numpy as np
# E.g. 1 - Set column values based on if another column is greater than or equal to 50
df['X'] = np.where(df['Y'] >= 50, 'yes', 'no')
# E.g. 2 - Replace values over 20000 with 0, otherwise keep original value
df['my_value'] = np.where(df.my_value > 20000, 0, df.my_value)
xxxxxxxxxx
df['column'].mask(df['column'] == 'original_value', new_value, inplace=True)
xxxxxxxxxx
In [41]:
df.loc[df['First Season'] > 1990, 'First Season'] = 1
df
Out[41]:
Team First Season Total Games
0 Dallas Cowboys 1960 894
1 Chicago Bears 1920 1357
2 Green Bay Packers 1921 1339
3 Miami Dolphins 1966 792
4 Baltimore Ravens 1 326
xxxxxxxxxx
# replace() syntax
DataFrame.replace(to_replace="<the_value_you_want_to_replace>", value="<new_value_for_input>", inplace=False, limit=None, regex=False, method='pad')