± \pm |∓ \mp |× \times | ÷ \div
∗ \ast |⋆ \star | ∘ \circ | ⋅ \cdot
∨ \vee |∧ \wedge |⊕ \oplus |⊗ \otimes
≤ \leq |≥ \geq |≡ \equiv | ⊨ \models
≪ \ll |≫ \gg |∥ \parallel | ∣ \mid
∼ \sim |≃ \simeq |≈ \approx | ≠ \neq
⩽ \leqslant |⩾ \geqslant|∤ \nmid | ≮ \nless
≯ \ngtr |⪇ \lneq |⪈ \gneq | ⊊ \subsetneq
⊢ \vdash |∈ \in |∉ \notin | ∞ \infty
∀ \forall |∃ \exists |ı \imath | ȷ \jmath
∂ \partial |∇ \nabla |ℵ \aleph | ¬ \neg
∅ \emptyset|∠ \angle |∖ \backslash | √ \surd
⊣ \dashv |⊥ \perp |≍ \asymp | ∙ \bullet
… \ldots |⋯ \cdots |⋮ \vdots | ⋱ \ddots
⊂ \subset |⊆ \subseteq|∩ \cap | ∪ \cup
⊃ \supset |⊇ \supseteq|⊉ \nsupseteq | ⊈ \nsubseteq