xxxxxxxxxx
from numpy import asarray
from sklearn.preprocessing import MinMaxScaler
# define data
data = asarray([[100, 0.001],
[8, 0.05],
[50, 0.005],
[88, 0.07],
[4, 0.1]])
print(data)
# define min max scaler
scaler = MinMaxScaler()
# transform data
scaled = scaler.fit_transform(data)
print(scaled)
xxxxxxxxxx
from sklearn.preprocessing import MinMaxScaler
#Normal minmaxscaler function to standarise data.
data = [[-1, 2], [-0.5, 6], [0, 10], [1, 18]]
scaler = MinMaxScaler()
scaler.fit(data)
#get data for Max and Min from scaler functions,
#best to store it in a dictionary and use it later make data normal again
print(scaler.transform([[2, 2]]))
Out>>> [[ 1.5 0. ]]
# Inverse transform the the 0-1 dataframe.
print(scaler.inverse_transform([[ 1.5 0. ]]))
Out>>> [[ 2.0 2.0]]
xxxxxxxxxx
Transform features by scaling each feature to a given range. This estimator scales and translates each feature individually such that it is in the given range on the training set, e.g. between zero and one. where min, max = feature_range.
xxxxxxxxxx
# Were you looking for min max python?
# if this is the case (works also with sets and numpy array)
>>> l = [1,2,8,4,7,9,6,3]
>>> min(l)
1
>>> max(l)
9