xxxxxxxxxx
# pre 0.24
feature_file_df['RESULT'] = RESULT_df['RESULT'].values
# >= 0.24
feature_file_df['RESULT'] = RESULT_df['RESULT'].to_numpy()
xxxxxxxxxx
#using the insert function:
df.insert(location, column_name, list_of_values)
#example
df.insert(0, 'new_column', ['a','b','c'])
#explanation:
#put "new_column" as first column of the dataframe
#and puts 'a','b' and 'c' as values
#using array-like access:
df['new_column_name'] = value
#df stands for dataframe
xxxxxxxxxx
import pandas as pd
df = pd.DataFrame({'a':[1,2], 'b':[3,4]})
df['c'] = df.apply(lambda row: row.a + row.b, axis=1)
df
# a b c
# 0 1 3 4
# 1 2 4 6
xxxxxxxxxx
# pre 0.24
feature_file_df['RESULT'] = RESULT_df['RESULT'].values
# >= 0.24
feature_file_df['RESULT'] = RESULT_df['RESULT'].to_numpy()