def call_existing_code(units, activation, dropout, lr):
model = keras.Sequential()
model.add(layers.Flatten())
model.add(layers.Dense(units=units, activation=activation))
if dropout:
model.add(layers.Dropout(rate=0.25))
model.add(layers.Dense(10, activation="softmax"))
model.compile(
optimizer=keras.optimizers.Adam(learning_rate=lr),
loss="categorical_crossentropy",
metrics=["accuracy"],
)
return model
def build_model(hp):
units = hp.Int("units", min_value=32, max_value=512, step=32)
activation = hp.Choice("activation", ["relu", "tanh"])
dropout = hp.Boolean("dropout")
lr = hp.Float("lr", min_value=1e-4, max_value=1e-2, sampling="log")
# call existing model-building code with the hyperparameter values.
model = call_existing_code(
units=units, activation=activation, dropout=dropout, lr=lr
)
return model
build_model(keras_tuner.HyperParameters())
tuner = keras_tuner.RandomSearch(
hypermodel=build_model,
objective="val_accuracy",
max_trials=3,
executions_per_trial=2,
overwrite=True,
directory="my_dir",
project_name="helloworld",
)
tuner.search(x_train, y_train, epochs=2, validation_data=(x_val, y_val))