xxxxxxxxxx
# Drop only rows from the dataframe where value of column A is missing
# Other rows will remain even if other columns have missing values as long as column A has no missing value
df.dropna(subset=['A'], inplace=True)
xxxxxxxxxx
# making new data frame with dropped NA values
new_data = df.dropna(axis = 0, how ='any')
xxxxxxxxxx
# Drop rows which contain any NaN value in the selected columns
mod_df = df.dropna( how='any',
subset=['Name', 'Age'])
xxxxxxxxxx
df = df[pd.notnull(df['RespondentID'])]
# Drop the missing value present in the "RespondentID" column