No ware to manage: Perhaps one of the biggest reasons for the hype about serverless computing is the fact there is absolutely no hardware or software to manage. The management of the serverless computing environment all the way from the underlying hardware to the OS, to even the application's platform layer, is managed by the cloud provider itself.
Faster execution time: Unlike your standard cloud instances, which generally take a good minute or two to boot up, functions, on the other hand, spin up very quickly, mostly in a matter of seconds. This could be due to the fact that the functions are made to run on top of a containerized platform.
Really low costs: Since there is virtually no opex involved with serverless computing, it is fairly cheap, even when compared to hosting and managing instances in the cloud. Also, the pricing model for serverless computing is a little different from that of your traditional cloud pricing model. Here, you are generally billed on the duration of your function's execution and the amount of memory it consumed during its execution period. The duration is calculated from the time your code begins executing until it returns or otherwise terminates and is rounded up to the nearest 100 ms.
Support of popular programming languages: Most cloud providers that provide serverless computing frameworks today, support a variety of programming languages, such as Java, Node.js, Python, and even C#. Azure functions allows the use of F#, PHP, Bash, Batch and PowerShell scripts in addition to the few mentioned.
Microservices compatible: Since serverless computing functions are small, independent chunks of code that are designed to perform a very specific set of roles or activities, they can be used as a delivery medium for microservices as well. This comes as a huge advantage as compared to hosting your monolithic applications on the cloud, which do not scale that effectively.
Event-driven applications: Serverless functions are an ideal choice for designing and running event-driven applications that react to certain events and take some action against them. For example, an image upload operation to a cloud storage triggers a function that creates associated thumbnail images for the same.