xxxxxxxxxx
python -c "import tensorflow as tf; print(tf.config.list_physical_devices('GPU'))"
xxxxxxxxxx
# For tensorflow 2:
print("Num GPUs Available: ", len(tf.config.list_physical_devices('GPU')))
# For tensorflow 1:
sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
xxxxxxxxxx
if not tf.config.list_physical_devices('GPU'):
print("No GPU was detected. Neural nets can be very slow without a GPU.")
if "google.colab" in sys.modules:
print("Go to Runtime > Change runtime and select a GPU hardware "
"accelerator.")
if "kaggle_secrets" in sys.modules:
print("Go to Settings > Accelerator and select GPU.")
xxxxxxxxxx
import tensorflow as tf
cifar = tf.keras.datasets.cifar100
(x_train, y_train), (x_test, y_test) = cifar.load_data()
model = tf.keras.applications.ResNet50(
include_top=True,
weights=None,
input_shape=(32, 32, 3),
classes=100,)
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
model.compile(optimizer="adam", loss=loss_fn, metrics=["accuracy"])
model.fit(x_train, y_train, epochs=5, batch_size=64)