xxxxxxxxxx
>>> df.sort_values(by=['col1'], ascending = False)
col1 col2 col3
0 A 2 0
1 A 1 1
2 B 9 9
5 C 4 3
4 D 7 2
3 NaN 8 4
xxxxxxxxxx
df.sort_values(by='col4', key=lambda col: col.str.lower())
col1 col2 col3 col4
0 A 2 0 a
1 A 1 1 B
2 B 9 9 c
3 NaN 8 4 D
4 D 7 2 e
5 C 4 3 F
xxxxxxxxxx
df.sort_values(by=['col1'])
col1 col2 col3 col4
0 A 2 0 a
1 A 1 1 B
2 B 9 9 c
5 C 4 3 F
4 D 7 2 e
3 NaN 8 4 D
xxxxxxxxxx
df = pd.DataFrame({
"time": ['0hr', '128hr', '72hr', '48hr', '96hr'],
"value": [10, 20, 30, 40, 50]
})
>>> df
time value
0 0hr 10
1 128hr 20
2 72hr 30
3 48hr 40
4 96hr 50
>>> from natsort import index_natsorted
>>> df.sort_values(
by="time",
key=lambda x: np.argsort(index_natsorted(df["time"]))
)
time value
0 0hr 10
3 48hr 40
2 72hr 30
4 96hr 50
1 128hr 20